aboutsummaryrefslogtreecommitdiff
blob: 3bcdc02131d0c4223ef0d5eaa9788c5b38ec2c0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
 * IBM Accurate Mathematical Library
 * written by International Business Machines Corp.
 * Copyright (C) 2001 Free Software Foundation
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
/**************************************************************************/
/*  MODULE_NAME urem.c                                                    */
/*                                                                        */
/*  FUNCTION: uremainder                                                  */
/*                                                                        */
/* An ultimate remainder routine. Given two IEEE double machine numbers x */
/* ,y   it computes the correctly rounded (to nearest) value of remainder */
/* of dividing x by y.                                                    */
/* Assumption: Machine arithmetic operations are performed in             */
/* round to nearest mode of IEEE 754 standard.                            */
/*                                                                        */
/* ************************************************************************/

#include "endian.h"
#include "mydefs.h"
#include "urem.h"
#include "MathLib.h"
#include "math_private.h"

/**************************************************************************/
/* An ultimate remainder routine. Given two IEEE double machine numbers x */
/* ,y   it computes the correctly rounded (to nearest) value of remainder */
/**************************************************************************/
double __ieee754_remainder(double x, double y)
{
  double z,d,xx;
#if 0
  double yy;
#endif
  int4 kx,ky,n,nn,n1,m1,l;
#if 0
  int4 m;
#endif
  mynumber u,t,w={{0,0}},v={{0,0}},ww={{0,0}},r;
  u.x=x;
  t.x=y;
  kx=u.i[HIGH_HALF]&0x7fffffff; /* no sign  for x*/
  t.i[HIGH_HALF]&=0x7fffffff;   /*no sign for y */
  ky=t.i[HIGH_HALF];
  /*------ |x| < 2^1023  and   2^-970 < |y| < 2^1024 ------------------*/
  if (kx<0x7fe00000 && ky<0x7ff00000 && ky>=0x03500000) {
    if (kx+0x00100000<ky) return x;
    if ((kx-0x01500000)<ky) {
      z=x/t.x;
      v.i[HIGH_HALF]=t.i[HIGH_HALF];
      d=(z+big.x)-big.x;
      xx=(x-d*v.x)-d*(t.x-v.x);
      if (d-z!=0.5&&d-z!=-0.5) return (xx!=0)?xx:((x>0)?ZERO.x:nZERO.x);
      else {
	if (ABS(xx)>0.5*t.x) return (z>d)?xx-t.x:xx+t.x;
	else return xx;
      }
    }   /*    (kx<(ky+0x01500000))         */
    else  {
      r.x=1.0/t.x;
      n=t.i[HIGH_HALF];
      nn=(n&0x7ff00000)+0x01400000;
      w.i[HIGH_HALF]=n;
      ww.x=t.x-w.x;
      l=(kx-nn)&0xfff00000;
      n1=ww.i[HIGH_HALF];
      m1=r.i[HIGH_HALF];
      while (l>0) {
	r.i[HIGH_HALF]=m1-l;
	z=u.x*r.x;
	w.i[HIGH_HALF]=n+l;
	ww.i[HIGH_HALF]=(n1)?n1+l:n1;
	d=(z+big.x)-big.x;
	u.x=(u.x-d*w.x)-d*ww.x;
	l=(u.i[HIGH_HALF]&0x7ff00000)-nn;
      }
      r.i[HIGH_HALF]=m1;
      w.i[HIGH_HALF]=n;
      ww.i[HIGH_HALF]=n1;
      z=u.x*r.x;
      d=(z+big.x)-big.x;
      u.x=(u.x-d*w.x)-d*ww.x;
      if (ABS(u.x)<0.5*t.x) return (u.x!=0)?u.x:((x>0)?ZERO.x:nZERO.x);
      else
        if (ABS(u.x)>0.5*t.x) return (d>z)?u.x+t.x:u.x-t.x;
        else
        {z=u.x/t.x; d=(z+big.x)-big.x; return ((u.x-d*w.x)-d*ww.x);}
    }

  }   /*   (kx<0x7fe00000&&ky<0x7ff00000&&ky>=0x03500000)     */
  else {
    if (kx<0x7fe00000&&ky<0x7ff00000&&(ky>0||t.i[LOW_HALF]!=0)) {
      y=ABS(y)*t128.x;
      z=__ieee754_remainder(x,y)*t128.x;
      z=__ieee754_remainder(z,y)*tm128.x;
      return z;
    }
  else {
    if ((kx&0x7ff00000)==0x7fe00000&&ky<0x7ff00000&&(ky>0||t.i[LOW_HALF]!=0)) {
      y=ABS(y);
      z=2.0*__ieee754_remainder(0.5*x,y);
      d = ABS(z);
      if (d <= ABS(d-y)) return z;
      else return (z>0)?z-y:z+y;
    }
    else { /* if x is too big */
      if (kx == 0x7ff00000 && u.i[LOW_HALF] == 0 && y == 1.0)
	return x / x;
      if (kx>=0x7ff00000||(ky==0&&t.i[LOW_HALF]==0)||ky>0x7ff00000||
	  (ky==0x7ff00000&&t.i[LOW_HALF]!=0))
	return (u.i[HIGH_HALF]&0x80000000)?nNAN.x:NAN.x;
      else return x;
    }
   }
  }
}